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SUMMARY

The Cox regression model may be viewed as a special case (see (1.3)) of the
general model described in this paper via the pair (Ay,¥) of predictable
characteristics of an r-variate counting process Nt = (Nt,...,NE), associated
with its compensator At = (Aé,...,Ai) as follows: Ay = A1+...+A§ and

¥, = dA,/dA, . It is supposed that the latter characteristic involves the real
valued parameter B, i.e. ¢ = $(B), to be estimated by means of a given sample
path of {Ng, 0<tsl}. Treating this problem in its asymptotic setting, we con-
sider our experiment (2.1) as n-th in a sequence of experiments, and let At
meet Condition I of asymptotic stability. Under this and certain additional
conditions introduced on demand, we study asymptotic properties of the
estimator B for B defined by (1.4), which is in fact the Cox estimator
extended to our situation. In particular, we characterize the consistency and
asymptotic normality of B by estimating the probability of large deviat{ons,
and then showing the convergence in all moments of the distribution of B to a
normal law. Finally, it is shown that E is the best within a class of
(regular) estimators in the sense that neither of them can have an asymptotic
distribution that is less spread out than that of B.

LI 23.2-1




RESUME

Le modéle de régression de Cox peut &tre considéré comme un cas spécial (voir
(1.3)) du modéle général décrit dans cet article via les caractéristiques
prévisibles (it,\l.lt) d'une processus de comptage r-dimensionnel Nt = (Nt,.. ,,Ni)
avec sa compensatrice Ay = (Atl:,.. . ,A%E_’) comme suit: Ay = A%:+...+A§ et

¥, = dA,/d4, . Il est supposé que la derniére caractéristique dépend d'un
paramétre réel B, c'est & dire Y = ¢ (B), qui doit 8tre estimé & la base d'une
trajectoire de {WNy, O<t<l}. En traitant ce probléme dans une cadre asymptotique,
nous considérons notre expériment (2.1) comme la n-iéme dans une série
d'expériments, et nous supposons que At satisfait la condition I de stabilité
asymptotique. Sous cette hypothése et certaines autres conditions introduites
aux points différents plus tard nous étudions les propriétés asymptotiques de
l'estimateur B de B défini par (1.4), qui est en fait l'estimateur de Cox

étendue & notre situation. Particuliérement nous caractérisons la convergence
et la normalité asymptotique de B par l'estimation de la probabilité des
grandes déviations et puis par démonstration la convergence des touts les _
moments de la loi de B vers une loi normale. Finalement nous montrons que B est
le meilleur dans une classe d'estimateur réguliers au semns qu'aucun de ceux
posséde une distribution asymptotique plus dispersée que celle de B.

1. INTRODUCTION

1. Statistical inference on counting processes attracts considerable attention in the literature of recent
years; see Bibliography where a number of related references is enclosed which may serve as a source for
many further references. Typically, the approach taken in these works is inspired by the developments of the
theory of stochastic processes related to the notion of martingales, see, e.g. Shiryayev (1981), as well as by the
developments of the asymptotic theory of statistical decisions, see, eg Le Cam (1969) or
Ibragimov/Has’minskii (1981); also Greenwood/Shiryayev (1985).

Within the framework of the theory of stochastic processes, these processes are defined on a complete pro-
bability space (2,9 P) equipped with a nondecreasing family {%,7=0} of right-continuous sub-c-algebras of F
augmented by sets from § of zero probability. For the sake of simplicity, we discuss only the case in which re
[0,1].

Let N = (N,,4,P) be r-variate counting process which by definition consists of components N fi=1,..r
having stepwise sample paths: Nj = 0, Ni—Ni_ = AN} = 0 or 1, AN'AN] = 0 if i5%; (no two component
processes jumping at the same time), and N{ <coP - a.s. With N one may associate an r-variate predictable
increasing process A = {A,,%,P} such that N—A =M = {M,, %, P} is an r-variate local square integrable

aartingale with the quadratic characteristic <M >, = diagA, —[A], (see Lemma 3.1).

'f, in addition, the filtration is of special form % =o0{w:N,,s<t} then the probability measure P is com-
ly defined by the compensator A (in the sense of Liptser/Shiryayev (1978), Section 18.3). Hence in this
the statistical model for the observed phenomena may be completely specified in terms of the compensa-

A, or, for convenience, in terms of the so-called (P, %)- predictable characteristics (Z »¥,) of N,, associated
with A, by the following relations ¥, = dA,/dZ, and /_!, =1TA, (here I, = col(1,...,1), and T indicates the
transposition). Obviously, the first of these characteristics is the compensator of N,=N! +...+ N7, while the r-
variate nonnegative predictable process ¥={¥,,9,P} consists of components ¥{,i =1,...,r, ¥} being, roughly
speaking, the probability of having a jump of N/ at time 7, given & _ and given that N, jumps at time 7;
Brémaud (1981), pp. 34 and 236.

2. In applications the latter characteristic is usually parametrized: it is restricted to a certain parametric
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family ¥e{¥(8),8%)} of nonnegative -predictable processes for each admisible value of the parameter
BeR.

In such a case B is “the parameter of interest” - inference about B is required by means of a given sample
path of {N,,0<¢=<1} drawn accordigg to the pair (4,,¥,(B)) of the characteristics of N for an unknown 8
and, typically, for the characteristic 4, specified only up to the restrictions of a general nature (to be intro-

duced below). Actually, Z, itself may depend on the parameter of interest B8, as well as on certain nuisance
quantities, as it is illustrated by the following

Example 1.1. Let {P,,ac@ BeB} be a family of the probability measures, where @ is a set of deterministic
nonnegative and nondecreasing functions @ = «,, 0<t=<1, and % an open set of R'. For each ac@ and e
let N = (N,,%,P,z) be an r-variate counting process of the Poisson type (Liptser/Shiryayev (1978), p. 249)
defined on the stochastic basis (2,5,{%, 0<t<1},P,g), with the compensator of form

A, = Aap) = [&(B)de,, 0<t<1 (L)
0

where ©(B) is an r-variate nonnegative ¥-predictable process for each Be®. Obviously, the pair of the
(P,,8,%)- predictable characteristics of the process N is given by the following relations

Y(B) = @(B)/ B(B) with B(B) = 17®,(B), and A (e.B) = [T(B)da, 12)
(]

The most popular special case of the Cox regression model for censored survival data specifies these charac-
teristics as follows:

r . - e
YiB) = Yie® / 3 ¥ieP%, AaB) = [ 3 ViefPda, 13)
i=1 0i=1

with certain % -predictable processes Yi and Zi, free from B; see, e.g., Andersen/Gill (1982) (or, for a bit more
general model, Prentice/Self (1983)). These authors and later Begun et.al. (1983) have shown that under wide
conditions the particular estimator 8 for 8, defined by the relation

1 1
sup fIn"¥(B) dN, = fIT¥,(B) dN,, n¥ = col{ln¥',i=1,..r} (1.4)
<%0 0

possesses the desired asymptotic properties (to be specified in the next section)

Obviously, if ¥(B) is a sufficiently smooth function of B, then the estimator Z% of B is well defined by con-
dition (1.4) also for the general set up discussed at the beginning of this subsection (and not only for the spe-
cial Cox model; see (1.3)). Naturally, one can expect that under circumstances similar to those of the papers
mentioned above, the estimator B preserves its desired properties. In the present paper this conjecture is
confirmed, furthermore, a refined characterization of these properties is given (cp. Efron (1977)).

Note that unlike Andersen/Gill (1982) here only the case of the real valued parameter 8 is duscussed, and
the abstract parameter « in (1.3) (or (1.2)) is considered as the nuisance quantity.

2. ASYMTOTIC INFERENCE

1. Following the usual device of the asymtotic theory (Le Cam (1969), Ibragimov/Has‘minskii (1
suppose that observed is an outcome of the experiment.

&, = ("9, {F,0<t<1},{P"})
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(with a certain family of probability measures {P"}), which is actually »n-th in the sequence of experiments
&,8,.... Fix P" at the right-hand side of (2.1), and define on that stochastic basis an r,-variate counting pro-
cess N = (NI, ,P"} where r,,n = 1,2,... is a nondecreasing sequence of integers. As above, with the com-
pensator A" = {A7,%7,P"} of N" relate the pair (Z:',\I';‘) of the (P",%})-predictable characteristics, and let
¥} depend on BeB.

The class of all admissible pairs (Z:',\I"'(ﬁ)) of the (P",7)-predictable characteristics of N” determines the
family of the probability measures {P"} in (2.1). The followmg basical condition restricts this class up to an
asymptotic stability requirement on the sequence F; = A Jky = 17A}/k, with an unboundedly increasing
sequence of numbers k,, n = 1,2,...

Condition I. For each admissible pair (Z :',‘I/{‘(,B)) of the (P",%7)-predictable characteristics there exists a con-
tinuous deterministic function of bounded variation F, such that Ff—F, in P" probability as n—co, each
L0=<r<l.

Remark 2.1.

In fact, by lemma 1 of Mcleish (1978), p. 146 the continuity of F, implies supo<,<) |F7 — F;|—0 in P" proba-
bility as n—co
Define now the estimator B,, for B by condition (1.4) with N = N” and ¥ = ¥". On deriving asymptotic

(as n—o0) properties of 8,, we require some regularity conditions on ¥"(8); see Conditions II-IV in Section
4.

Condition II requires differentiability (in a certain sense) of /¥"(8 col { \/‘17"- J=1,.,r,} and exis-
tance of a positive number v - the limit of [}§1(8/88)\/¥*(B) I*dF" in P" probabzhty‘ Condition III (of the
Lindeberg type ), together with Condition 11, leads to the conclusion of Corollary 4.1 needed for deriving
asymptotic normality N (0,1/4v) of the estimator /§,,.

As for Condition IV, it permits us (via Lemma 4.1) to apply a generalized version of Theorem 5.1
(Ibragimov/Has'minskii (1981), Section 1.5: Inequalities for Probabilities of Large Deviations) due to Sieders
(1985), the conclusion of which can be informally described as follows: Let an estimator i?,, for B be defined
by maximizing with respect to 8 a certain functional of observations (e.g., the likelihood function). If this
functional satisfies certain conditions, similar to the conditions imposed on the likelihood function in the
above mentioned Theorem 5.1, then the estimator /3’,, is not only consistent (in P" probability), but also the
following holds: for sufficiently large values of n the P"-probabxhty that 2\/k—,,7 (B,, B) exceeds in absolute
value a (sufficiently large) number H is less then Coexp—coH with some positive constants ¢y and Cg,

Hence, this way we get the first main result of Section 4 - the refinement of consistency of the estimator ,Z?,,
(Proposition 4.1).

The second main result concerns the refinement of asymptotic normality of Z?,, based on a generalization of
Theorem 10.1 (Ibragimov/Has'minskii (1981), p. 103): if the generalized version of Theorem 5.1 holds (Sieders
(1985)), as well as Corollary 4.1 and Lemma 4.2, then all moments of 2\/k_,,7(i3,,—/9) converge to the
corresponding moments of the standard normal distribution (Propostion 4.2).

2. On discussing optimality properties of the estimator 8, in Section 5, we restrict our considerations to the
processes of the Poisson type; see Example 1.1 in which all the introduced quantities are indexed now by »,
except the parameters « and B, of course.

In the first place we show the LAN property of the family {P 3,ae® Be®} of the probability measures
defined on {Q",9"}; see Definition 4.1. Along with P" = P} 4, let the probability measure P" = P2 «.p be
defined on (9°,9"), where "= B+b/ \/l?_e@, beR! and o"€A is defined by the relation \/da, /de, =
1 + a/+\/k,, a,eL*(dF) With F,=F/a,) of Condition VI2. Then P” <<P", and dP"/dP" is given by
(5.1). The above mentioned LAN property is stated in Proposition 5.1 which tells us that under the Conditions
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V-VII the logarithm of dP"/dP" is in fact asymptotically quadratic with the asymptotically normal linear term
85 g(a,b), and the quadratic term —%g,,_,;(a,b) where g, g(a,b) is the limit in P" probability of the quadratic
characteristic of 87 g(a,b).

Condition V.I requires continuous differentiability of 1/®"(8) (in certain sense), and Condition V.2,
together with Condition VI, determines the form of g, g(a,b). Condition VII (of the Lindeberg type) ensures
the asymptotic normality of the linear term 8} g(a,b).

Having the LAN, one can take advantage of its fairly general implications due to Le Cam and Hajek (see,
e.g., Ibragimov/Has'minskii (1981), Ch. II and 1II, or Millar (1983)). Specifically, our conclusions about
asymptotic optimality properties of the estimator E,, are based on the application of Hajek’s convolution
theorem to the situation under consideration (see Theorem 5.1).

For these purposes, define first the class of regular estimators {8%) for 8. Under the conditions ensuring
the LAN property of the family { P} g,ac@ BB}, at “point” ac® Be% (Proposition 5.1), the estimator By is
called regular (at the point ac@ Be®) if for some nondegenerate distribution function G% the following weak
convergence takes place:

e(\E Bk —B)IP"} = G} 2.2)

uniformly for each |b|<c whatever ¢>0, and each bounded acL*(dF)«", B" and P" being defined as
above). To- -

Now, Hajek’s convolution theorem (Begun et al. (1983)) tells us that G% at the right-hand side of (2.2) can
be represented as the convolution of a certain normal law with another distribution law, G} say. By Proposi-
tion 5.2, in our special case G% = N(0,1 /4v)*G} where N(0,1 /4v) coincides with the asymptotic distribu-
tion of \/k:' (B, —P); see the previous subsection.

Since convolution “spreads out mass”, no regular estimator 8% can have an asymptotic distribution that is
less spread out then N (0,1/4v). Thus, in this sense the estimator 8, (which is regular under the conditions of
the previous subsection; see Theorem 5.1) is best within the class {8%}.

:l'he proof of the results just mentioned uses the fact that the neighborhood about « that shrinks at rate
k, * in the directions {a}, defined above, is “sufficiently fat” to include the function (3/98) \/W //:(B)
where ¢,(8) is the bounded limit in Pj g probability of @f(ﬁ)/k,, (Condition VI ). Simply, the variety {a}
includes (3/38) m}‘ / \[JKBT ; see Proposition 5.2.

3. This inclusion typically fails in situations in which {a} is a low dimentional subspace of L(dF),
namely, in the frequently encountered situations in which “the cumulative hazard function” a, is also
parametrized up to a certain number of nuisance parameters, and hence {a} is taken as a linear subspace,
A=A(a) say, spanned by the logarithmic derivatives of the density of a, with respect to the nuisance parame-
ters; see, e.g., Efron (1977), Jarupskin (1983), Borgan (1984), Hjort (1984). According to these works the fol-
lowing conclusions can be drawn about the maximum likelihood estimator 8}, for B, defined by maximizing
the likelihood function (see (5.1)) simultaneously with respect to the parameter of interest 8 and the nuisance
parameters.

Under certain regularity conditions £( \/k, (B3 —BDIP"}=N (0.9, }4) with 4,5 defined as in (5.3), and
this means that no R' X A-regular estimator B4 can have an asymptotic distribution less spread then that of
B In fact, the estimator Bky is called R! X A-regular if for some nondegenerate distribution function G
£{ \/7\7,‘ Bra—p" | _}:"}:G‘,’M for each beR',aeA, whereas Proposition 5.2 tells us that G%4 may be
represented as the convolution (5.3). In particular, B}, is less dispersed then the estimator B3, for comparing
their variances we have §~! <(4v)™" with equality iff (3/38)\/5,(B) /+/#(B) €A (see Remark 5.3).

It is important, however, that there is a subclass of estimators for 8 whithin which no estimator has a less
spread asymptotic distribution then B, defined by (1.4). This is the subclass {8k} C {Bk4} of regular estima-
tors defined as in the previous subsection by the condition: whatever the (bounded) direction aeL?(dF) of
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approach to « there is some nondegenerate distribution function G% such that (2.2) takt.as place. F)f c'ours?,
B is not regular in this sense, as for a @4 a bias appears in its limiting distribution. While the estimator g,
is regular, and it is the best among {B%} since by Proposition 5.3 G% may be always represented as the convo-

lution G:zN(O,IMV)*q (Theorem 5.1).

3. THE LIKELIHOOD RATIO

1. Let (2,%,P) be a complete probability space with a filtration {%,0=<t=<1} satisfying the usual condi-
tions.

Let N = {N,,%,P; 0<r<1} be a multivariate (r-variate) counting process: N = col{N',...,N’}. Con-
sider its Doob-Meyer decomposition N = M + A where M = {M,,%,P; 0<r<1} is a local square integr-
able martingale, and A = {A,,9,,P; 0<<t<1} a predictable compensator.

Lemma 3.1. The quadratic variation and quadratic characteristic of M are given by the following relations:
1) [M] = diagN — [A]—[M,A]—[A,M]
2) <M> = diggA — [A]

Proof. By definition [N] = diagN, and this gives 1). To get 2) take the compensator of both sides of I).
Remark 3.1. Denote N = N'+..+N",N = M+4. From 2) follows
t
<M>, =4, = [A], = [(1-Ad)dd, A<M> = (1-A4)Ad,
0

hence 0<A4 <1. For simplicity assume A4 <1 (in fact one can easily dispence with this restriction; see e.g,
Kabanov et al. (1975) or (1980)).

Remark 3.2. Consider ¥, = I,—AA,®I, and vil=1 + (1—AZ,)"AA,®I, with 1, = col(1,...,1) and
14 !

» = diggl,. Then <M>, = [VdiagdA and diagA, = [V ld<m>.
0 0

14 1 13
Lemma 32. Letg, = [V™'dA = J(1—A4)"'dA and o1, = fVv™'dM =M, + [@M,] Then
0 0 1)

1 (M, = diagN, + [(1-AN)d[@),
]

2) <M> = diagA + [@A].

Poof. As AN®? = diggAN, (1-ANY? = (1—AN) and AN(1—AN) = 0, 1) follows from
A= AM + AGAM = AN — AQ(1-AN). 3.0
To get 2) take the compensators of both sides of 1).

2. Suppose that a probability measure P in addition to the probability measure P is given on a measurable
space (2,9 with a filtration of special form §, = o{N;:s<r},0<r<1. Along with N = (N,,%,P), consider
the counting process N = (N,,‘i?,,f) with compensator A = (A, %,P).

Theorem 3.1. (Kabanov et al. (1980)). 1) For absolute continuity of P with respect to P (P <<<P) the following
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conditions are necessary and sufficient: P -a.s.
I A4 = 1implies A4 = 1.

t
11. The components ﬁ‘ and A4',i=1,..r of A and A are related as Al = fk‘dAi where

0
col{A', ..., N} = A = {A,,%) is a nonnegative predictable process such that the associate Hellinger

Lr
3 . = [ 2 — —_ —
process is bounded: 9 = bfigl(\/di VaZATY + 2 QG /1— A4, 1—-Ad, ) <co.

o<an <t

2) Assume £<<P, and denote z, a right-continuous modification of the martingale E(df/dP|€f,) o=r<l.

t
Then z, = exp{m, + EI(IJI(Am,)} where m, = f(A—ll,)rd"JIL and ®,(x) = In(1+x)—x.
g 0

Remark 33. By (3.1) and (A—1,)7A@ = 1—:—’%‘%, @, (Am) = OT(A—1)AN + (I-W)Q,(l%——l).
—_ 1—.

! — - —  1-Md
Hence z, = exp{ [In"AdN~4; + 4; + 3 (1-AN,)n
0 bl s —_

—} (cp. Liptser/Shiryayev (1978), p. 312).

1—AA4

Remark 34. Process z = (z,,%,P), being a nonnegative supermartingale with E(z|P) = 1 as well as a local
t

martingale, is a solution of the Doleans-Dade equation z, = 1 + f z, _dm,,0<r<1 (Liptser/Shiryayev (1978),
0

p- 288).

3. Let {Q",9"(%,0<t<1),P"}, n=12,.. be a sequence of stochastic basises of the same type as above.
Let N” = (N," 9!, P") be an r,-variate counting process with the Doob-Meyer decomposition
N" = M" + A", where r,, n =1,2,... is a nondecreasing sequence of integers.

t
Define also 9 = [(V")"'dM" where V" = I, —AA"®I, . Assume that the compensator A" satisfies
0

Condition I of Section 2.
Lemma 3.3. Under Condition I for each £,0<r<1 k! <o >,—F, i P" probability as n—oco.

Proof. By 2) of Lemma 3.2 k' <9 >, = FT + k' E(I—AZ:)“(AZ:)Z, where the second term satisfies
sl
the inequality
L s a-ath) @iy + - 3 a-ar) ety
ky sl kn S

L Vean
0<adf g sl

2

<=4, +

4 AT
k. > (1—A44y)

k" st

,
ERCUAl

and therefore tends to 0 in P" probability, as k, '[Z"],%k,,’ 'Z:'d—-)O and the number of jumps of Z:, s<U,
exceeding ‘;- is finite.

The last argument is used also in (3.2) and (3.4) below.

Theorem 3.2. Let W' = (W!,%) be a continuous Gaussian martingale with the quadratic variation
<W'>, = F, Then, under Condition I, &, * W ~3W as n—co in D[0,1].
Proof follows from Liptser/Shiryayev (1980), Corollary 2. In fact, the condition (12) of this corollary is met

| N— . ‘ — R
(Lemma 3.3). As for the Lindeberg condition (L) of the corollary, for k, wpo=k, f(l ——AA:)"‘dM: it is
0
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1
satisfied as for each ¢, 0<e<7y

kIO > 1- (1 ~AT)) 2 <M >, = k,,“oftl(ﬂl'>1—<)(l—Azf)"dzl'sk:‘ z (1—Ad)"'~0
' e (3.2)
in P" probability as n—cc.
Lemma 34. Let H" = {H,"%,P"} , n=12,.. be a sequence of r,-vector valued predictable processes
such that there is a function o} satisfying j" o>dF >0 for which (each 1, 0<t<1)
0

1 14
[W"Tdiagd A" [odF (3.3)
0 0

1 1

in P" probability as n—co. Then < [H"7d9U">— [¢?dF in P" probability as n—co.
0 0

Proof. In view of the continuity of F

t
[HTdiagd A™H" = T H" diagAA"H" -0
0 s<I

in P" probability as n— o0, and this implies

r

[wTde A"H" = S (1-Ad5) T HITAANP <

0 st

< S HTdiaghATH! + 3 (1-A4,)"'HTdiagAATHT—0 (3.4)
sKt st
ecadi<t -;-m:«

t
in P" probability as n—oc0, by @& = | (1—A4")"'dA" and the Schwartz inequality. Now, the desired result
0

follows from (3.3), (3.4) and 2) of Lemma 3.2.

Theorem 3.3. Along with (3.3) let the following Lindeberg condition be satisfied: for each 7, 0<<r=<<1 and ¢>0
(here H* = col{H"™,i=1,...,1,})
1r, ‘
[ SI(H"|>e(H "} dA" -0 (3.5)
0i=t

in P" probability as n—o0. Let W = (W,,%) be a continuous Gaussian martingale with the quadratic varia-

1 t
tion <W>, = [¢*dF. Then [H"7d9U"' -3, as n—co in D0, 1)).
0 0

Proof is immediate consequence of Liptser/Shiryayev (1980), Corollary 2, for its conditions (12) and (L;)
are varified by Lemma 3.4 and, respectively, (3.4) and (3.5).

4. Suppose that a probability measure P" in addition to P" is given on a measurable space {Q", 9"} in the
sequence of stochastic basises of the precedTng subsection. Suppose in addition that the filtration {F7,0<r<1}
is minimal: & = o{NJ:s<r} where N" = (N7,%,P") is an r,-variate counting process with the compensator
A" = (A}, %,P"). Let E" = (N?,"J{‘,f") be another counting process with the compensator
A" = (AL9,P").

For each, n assume f" <<P" and, in accordance with II of Theorem 3.1, define the Hellinger process

t
= [U"diagdA"U" + 1—-Ad;, — \/1-A4, }?
g 6[ iag af?’ ‘( \/ A \/ s)



where U" = col{Ui" = Vdﬁ’"/dA"’ — 1, i=1,..,r,}. Obviously, A" = col{)\‘" = (U‘"+l)2,i=1,...,r,,}.
Theorem 3.4. Let there be a function o? satisfying f o>dF>0 such that for each z,0<t<1 I — f o*dF in P"

probability as n—oo. Let U",n =1,2,... satisfy the Lmdcbcrg condition (3.5). Then Inz{ = mf} + > @,(amy)

s<l

t
(with m? = [(A"—1,)TdON") is asymptotically normal:
: 0

1 1
E(Inzf [P"}=>N(—2 [o*dF, 4 [d*dF). (3.6)
0 0

Proof of this theorem follows the same line as that of Gill (1979) Proposition 5.3.1, and therefore it will be
shortly sketched in the following two remarks.

1 1
Remark 3.5. Since U”" satisfies the conditions of Theorem 3.3, m] = 2 f uTdomr + f U™ diagdIMMU" is
0 0

1
asymptotically normal with zero mean and variance 4 f o°dF, that is the limit in P" probability of
0

1
4< furTdon >
0
Remark 3.6. As
T3 0,am) = f(bT(nJ")dN" + S (1-AN")d,(1— .\/ )— fﬂJ”leag dA"U"
s<1 s=<1

where the first two terms tend to zero, while the third term tends to — f o*dF in P" probability, the desired
0

limiting value is obtamed for the mean in (3.6). Here ®,(x) for x=col(x',..,x") denotes
col{ln(1+x')—x' +—x 2i=1,..,r)

In the sequel we deal with a situation in which the following condition is satisfied: There is a sequence of
bounded r,-variate predictable processes $” = {S],%,P"},n =1,2,... such that

[(U" T ) diag dA"(U"—k, sn)_»o 3.7
in P" probability as n—oco.

Corollary 3.1. If k;+§",n=l,2,... satisfies (3.3, (3.5) and (3.7) (with H" =k, °S"), then

1 1
2} —exp{\/F_fS"TdM"——zfozdF+11,,} where 7,—0 in P" probability as n—oo and
"o 0

Ll 1
Bk, * [S"TdON}=N (O, [o*dF).
0 0

4. CONSISTENCY AND ASYMPTOTIC NORMALITY

1. Consider the situation described in Subsection 2.1, and suppose that the r,-vector valued process
V¥"(B) is continuously differentiable (in B) in the following sense:
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Condition IL. There is a sequence of continuous in B r,-vector valued predictable processes

L EN= g VIB) = (LHASLP") n=12..
such that if (4}, ¥7(B)) is the pair of the (P",#")-predictable characteristics, then

II'1.  For each real valued b such that 87 = B + b/ /k, €%, eventually,

| VT~ VI - v’
0 - n

in P" probability as n—oo0.

t
I12.  For some deterministic function ¢2(8) such that v,(8) = / *(B)dF>0, 0<i<1
0

VB = [ L"BPdF"—v,(B)
0

in P" probability as n—co.

We shall show that the estimator ,&,,, defined by (1.4) with ¥ = ¥" and N = N" is consistant and asymp-
totically normal N(0,1/4v), v = v,(B). For this we need some additional conditions stipulated in the next
subsection.

2. Define 5%\1:"(3) = 2{diag‘lf"03)}“2a—2- V¥ B) and

—é%lan"w) = 2{diag‘I"’(,8)}'”2% VV'(B).
Obviously,
’ i n Tjan — I Tl n 1" = 4.
of{aﬁln\y (B))TdA ojn,_ aB\P(B)dA 0. .1
Hence,
I ._a_. T n ' __3_ n T Jagn
oj{ aﬂlnqr"(,e)} dm" = 0[{ BBIH\P B} dN 4.2)
and
LI i T3 n _a~ n — ; n 2 n_,
. Of (g n¥"(B)) diag dA (72 In¥"(B)) = 4 Oj IL"B)dF" —4v,(B) 4.3)

in P" probability as n—co (see I1.2 ).
Now we apply Theorem 3.3. to derive asymptotic normality of the intergral in (4.2), taking account of (4.1)
and (4.3).

Corollary 4.1.  Along with Conditions II, let the following Lindeberg condition hold
(L" = col{L™i=1,..r,}):

Condition III. If (Z:" ¥7(B)) is the pair of the (P", %" )-predictable characteristics, then for each ¢>0
1r, ) ) )
kL/zl(kn— I/ZILM(B)‘>€)|LM(B)|2¢Am'—>0
nQi=1

in P" probability as n—co Then
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U T nipn
G(E 6{{3—B-1n\1f (B)}TdN"|PM)=N (0,4v)

Condition IV. If (4,,%" (B)) is the pair of the (P", %7 )-predictable characteristics, then

! - n
IEVA RO RRVAH:DIRET
0

where

B, =B+ b/2\/k,v, beB,=%—-B/2/k.v, =12,

obeys the following bounds: there are constants ;>0 and C,>C; (independent of n) such that for
sufficiently large values of n and each b;€B,, i =1,2

1
P" as. Ci(br—bi < [|N/F(Bo) — /T BN PdA" <Cy(by—b,)
0

1
Lemma 4.1. Let Condition IV hold. Define Y"(b) = exp [{In¥g,)—In¥"(f"dN", beB,. Then there are
0

constants ¢ >0 and ¢, >0 such that for each beB, and b,€B,, i =1,2
) E{(\/Y'(B)|P"}<e ",

(ii) E{|\/Y(b2) — /T (B |P"}<calby—by 2

Proof.

(). In accordance with the remarks 3.3 and 3.4

a4y

! = nc -n
E(VY ®Yexp(z [|N/TB) — VI B Pdd™ + 2(1—Ms)1n(1+%1 NALCIRAH IR L ARt
0 s<1 - s

Thus

1=expsC b E(\/ T (B)exp—+ | /T2(B) — \/¥r(B) FAALIP" Y ZE(\/Y"(B) |P" exp ¢1b%.
s<1

i) As
E(Y"(B)|P"} = E{exp Ofl(ln‘l’"(ﬁn)—ln‘I”‘(B))TdN"lP"} =1, w
and
E{mexp (%j[\/’\yn—l(,gn—_ \/‘I"'_(Bmzd;l—"t 4
+ E}(l—Aﬁf)ln(H% :A;:Z,l\/'\lﬂi_— VIEBTIPT = 1,
we have

Ay
lsZexp%CZ(bz—bl)zE{ Y"(b,)Y"(bz)exp—;‘él-mTh/‘I”'(ﬁ,,z -'\/\I'"(B,,)|2|P"}
§ s

<2expy Calby —b)PE(/T @0V B exp( 3 |\/FiB) —\/ V5B 45|
:_<l|

ocatfet
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sl 1-

A/-{: %Cx 27 11
S TR - [T PIP <E(/TTET G P e G

(cp. the proof of Lemma 3.3), and

E{(|\/T(by) — /Y () FP"} <201 —E{/Y7(B)Y (b)) |P" )<

<2(l—e TratTh y<eaba—b)

Lemma 4.1 and the equation (4.4) allow us to apply the result of Sieders (1985) mentioned in Subsection
2.1

Proposition 4.1. Under the conditions stipulated above there are certain positive constants Cp and ¢q such
that the estimator B, is consistent: 8,~8 in P” probability, and for sufficiently large values of » and H

P {[2\/E (Ba—B)|>H )} <Cpe "
Repeating the arguments leading to Corollary 3.5, and taking into account Corollary 4.1 we arrive at the

assertion of the following lemma.

Lemma 4.2. Under the conditions stipulated above finite dimentional distributions of Y"(b) tend to finite
. . L by — b
dimentional distributions of "

P = N,

In view of the assertions of the Lemmas 4.1 and 4.2, we can make use of Theorem 1.10.1 and 1I1.1.2 of
Ibragimov/Has'minskii (1981). The result can be formulated as

Proposition 4.2. Under the conditions stipulated above, for each >0 as n—o0
. 1 .
n Y AL S i G n ni~
PP {12+ /Rav(By— B) Wy Of{ Y (B)}TdN"|>8}—0
£(2\/Kry (Bu— BIP"} =N (0, 1)

and

N K ‘
Y e

5. ASYMPTOTIC OPTIMALITY

1. As in Subsection 2.2, suppose that the process N" is of the Poisson type with the compensator (1.1)
where @ = @” satisfies the conditions stipulated below.

Condition V. There is a sequence of r,-vector valued %7-predictable processes, continuously dependent on 8,
say (3/38)v/9"(B), n=1,2,..., such that for each «e@ and Be% the following holds:

V.1. For each b such that 87 =8+b//k, € eventually,

1
[INEE ~ V& B) ~—2= 2\ /T (@) a0
[vre V3

in Pj g probability as n—oo;
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!
V.2. For some deterministic function p>(8) such that w,(a,8)= f p2(B)de, >0, and for each 1, 0<r<1, ae@,
0
Be®
!
[o = ..L _a_. n 2
W) = o of 138 VOB das—w,(a, B)
in Py g probability as n—oo.

Condition VI. There is a positive bounded deterministic function ¢,(8) (uniformly in ¢ and 8 m<¢,(B)<M
where 0<<m <M <c0) having continuous bounded derivative in 8, such that for each ae@, fe® and 0<r<1

1 1
VL 1. Fl(a,8) = f Zl—d):(ﬁ)das—»F,(a,B) in Pg g probability as n—o0 where F, = Fy(a,B) = f os(B)dag >0
o fn 0

(cp. Condition I).
VI2. For 3/38)@" = 11(3/3B)@" = 2] {diag®"}"">(3/3B)\/®"

L9 =n )

Of 25 & (Bdes— 0/ 3p & (Bas <co
in Pj g probability as n—co.

Remark 5.1. By the Conditions I1.2, V.2, VL1, V1.2 and (4.3)

Wa) = Vwh)~ [l5 VT Pdamom(a. ) [I5751/5 P, = v(ef)
0 0

in P p probability as — co.

2. Let the probability measures P" and f" be defined on (",9") as in Subsection 2.2. Then (see remark
3.3)

df" — l n n n ‘ dg: TV l_" n l—"
o - ol Of(ln%(g")—ln@, (B)TdN] + zof 1n;;§,—de— 0f¢:(l_?")d_a_: + Of«b,.(/i)dax} (5.1)

We shall now apply Corollary 3.1 to show the LAN of the (Pgg,a@, Be®) in the sense of

Definition 5.1. This family is called Locally Asymptotically Normal (LAN) at the “point” ac@, fe% if for
each beR' and each bounded ae L*(dF) such that o €@,B" €% eventually, there is a sequence of asymptoti-
cally normal variables 87 g(a,b), n =1,2,...: -

£{8a.p(a,0)|Pap }=N(0.ga,5(a.b))

as n—oo with g, g(a,b)>0 for which dP"/dP" = exp{BZ‘ﬁ(a,b)~-%-g,,‘B(a,b) + na.p(a.b)} where n; g(a,b)—0
in P p probability as n—co.
Note first that if

U? = col{ /7B /BT (B) \/dai [ da, —1,i = L,.ry},
then (3.7) is satisfied by S} = Sig(a,b) = -;—b(alaﬁ)lntbj'(ﬁ) + al, , for which

’ " (9/3B)/¢s(B) ’
?ln_ Of S"TdiagdA"S" —b*w (e, B) + 2b Of —ﬁ%@dﬂ(a,ﬂ) + O/agdp,(a,ﬁ) (52)

in P” probability as n— o0, by the Conditions V and VI. Finally, let the following Lindeberg condition hold:
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Condition VII. For each ac® Be% and ¢>0

— [ 21(k 2= % 2B |>e)| % \/O7(B) |2 da;—0

nO,

in Pg 5 as n—oo.

Proposition 5.1. Under the Conditions V-VII the family {Pj g,a€@ Be®} is LAN at the “poir
for 8; g(a,b) =

1

\/lk_ f S’,é(a,b)rd(N"*A"(a,B)) and g,p(a,b) that equals to 4 times the righ
L

(5.2) evaluated at r =1.

3. Suppose that the underling model confines “the directions” a to a linear subspace AeL
{Bk4} be a class of R'XA-regular estimators for B, which includes a subclass of regu

{Bk} C{Bra} (see Subsection 2.3). Then, by Hajek’s convolution theorem (Begun et al. (1983),
we have

Proposition 5.2. Let the Condition V-VII hold. Then
0] B \/Kn (Bis = B)|P"}=Gha = N(0,$ 2})*Ga

1
as n—co with some distribution law Gk, where 4, 3 =4{w,(a,8) — fvrf(a,ﬁ)dFs(a,/?)}, 7s(e, B)
0

jection of (3/88)~/¢,(B)//$.(B) into A, that is, it satisfies the equation

3/3B)\/B
{—ﬂ (. B) YasdF () = 0
[ 7%®

for each a;€A.

(i) £ \/E(B’k-f")lf"}=>0% = N(0,1/4,(,B))*Gk

as n—co with some distribution law Gk (see Remark 5.1), uniformly for each |b|<<c¢ whatever ¢
bounded a € L*(dF)

Remark 5.2. For the “least favorable” direction g, = —bm,(8) the quantity g, s(a,b) coincides w
being Fisher’s information for 8 (Begun et al. (1983), Section 3).

Remark 5.3. Evidently, 9, g=4v,(a,8) with equality iff (3/98) //®:(B) €A (see Remark

Having the limiting distribution of \/7(—,,(3,, —B) under P” (Proposnion 4.2), one can aley
tiguity arguments (allowed by Proposition (5.2)) to arrive at the formula (5.4) for B} = 8,
degenerates at 0. These considerations can be summerized as the following statement on the opti
ties of the estimator i?,,.

Theorem 5.1. Under the conditions stipulated above, the estimator f, is

(/e (Bn— ") P"}=N(0,1/4v,(a,B)) for each beR' and each bounded a € L*(dF) determin
P" as in Subsection 2.2.

The estimator ii,, is the best among {B% } in the sense that no regular estimator can have the
bution less spread then 8,. Besides, iff (3/38)~/$,(B)/+/$.(B) €A, then it is the best among {f
the same sense.
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